Haemochromatosis Special Interest Group 7th March 2024

RIP - Dr Martin Johnson Emeritus Professor of Nursing, University of Salford

Haemochromatosis – SIG _{Agenda}

- 1. Biobank update Mitch Lucas, Exeter
- 2. Review of work to date
- 3. Blood sciences, including HFE mutation testing
- 4. Imaging (MRI)
- 5. Venesection
- 6. SIG sub-groups
- 7. Any other business

Haemochromatosis SIG March 7th, 2024

Research title: *HFE* genotypes, haemochromatosis diagnosis status and clinical penetrance to age 80 in the UK Biobank community cohort

Authors: Mitchell R Lucas^{1*}, Janice L Atkins¹, Luke C Pilling¹, Jeremy Shearman², David Melzer¹

*PhD student in the Epidemiology and Public Health team University of Exeter Medical School

email: ml850@exeter.ac.uk

Acknowledgements

Medical School

Janice Atkins

Data source

*biobank**

Funders

NIHR National Institute for Health and Care Research

Luke Pilling

Jeremy Shearman

Prof David Melzer

Research question: To what extent do *HFE* genotypes predict the risk of hospital diagnosed complications, even in older ages?

UK Biobank community cohort:

Baseline (2006-2010):

- N= >500,000 community volunteers: England, Wales and Scotland
- 40 70 years old, some healthier volunteer effect
- C282Y+/+: 1,298 males, 1,604 females

Follow-up: now mean 13.3 years incident events, routine care

- Hospital inpatient records (including day patient/procedures)
- National cancer registry
- Death certificates

Studied 34 incident hospital-diagnosed outcomes:

- Haemochromatosis
- Brain related outcomes
- Liver related outcomes
- Musculoskeletal related outcomes
- Cancer related outcomes
- Diabetes
- Mortality

Hypothesis:

• *HFE* gene mutations increase the risk of morbidity and mortality among males and females, even into older age

'Risk' of being diagnosed by end of follow up:

Important mentions:

- Increased risk of mortality in male p.C282Y+/+ but not in females
- Increased risk of brain related outcomes in male p.C282Y+/+ but only delirium in females
- Increased risk of joint replacement surgeries in male and female p.C282Y+/+
- Modest increased risk in diabetes in male p.C282Y+/+
- No increased risk in cardiac related outcomes in male or female p.C282Y+/+

HFE C282Y+/+ (homozygous) Excess mortality: n=1,298 males, UK Biobank

Estimated by age 80:

- 33.1% of C282Y homozygotes die
- 25.4% without HFE variants
- HR=1.29 (95%CI: 1.12-1.48), p=4.7*10⁻⁴

Excluding diagnosed hemochromatosis at baseline

• HR=1.22 (CI 1.05 to 1.43), p=0.01

Not statistically significant in female C282Y+/+

From Lucas M et al (Melzer group) BMJ Open 2024

Liver disease: cumulative incidence clinically diagnosed

in 1,298 C282Y homozygous males, UK Biobank

Cumulative incidence of liver disease among males

Males - cumulative incidence liver disease by age 80:

- 20.3% (95% CI: 16.7% to 24.6%)
- 8.3% without *HFE* variants

Other outcomes

in 1,298 C282Y homozygous males, UK Biobank

Males - cumulative incidence joint replacement by age 80:

- 27.9% (95% CI: 23.9% to 32.4%) ٠
- 17.1% without HFE variants •

From Lucas M et al (Melzer group) BMJ Open 2024 Joint replacement surgery = hip/knee/ankle/shoulder Males - cumulative incidence brain outcomes by age 80:

- 16.4% (95% CI: 12.1% to 21.1%) •
- 10.0% without HFE variants •

From Lucas M et al (Melzer group) BMJ Open 2024 Any brain outcome = delirium/dementia/Parkinson's disease

Female: cumulative incident clinical diagnosis

In 1,604 homozygous females, UK Biobank

Females - cumulative incidence liver disease by age 80:8.9% (95% CI: 7.0% to 11.4%)6.8% without HFE variants

Females - cumulative incidence joint replacement by age 80:23.2% (95% CI: 19.8% to 27.1%)21.1% without HFE variants

Less severe HFE variants

no statistically significant associations: baseline and 13-year follow-up

"Over the past two weeks, how often have you felt tired or had little energy?":

fatigue = "more than half the days" & "nearly every day".

Very large groups studied:

- 268,535 people without HFE mutations
- 105,004 people with p.H63D+/-
- 10,253 people with p.H63D+/+
- 10,719 people with p.C282Y/p.H63D,
- 10,253 people with p.H63D+/+
- 53,857 people with p.C282Y+/-
- 2,902 people with p.C282Y+/+

Unfortunately, some people with these variants do develop fatigue, liver disease, arthritis, diabetes, etc but at approximately the same rate as those without HFE variants

So other causes need to be identified and treated

Thank you

2. Review of work to date

Useful clinical terms ...

- Haemochromatosis (i.e. HH/YY with iron overload)
- Hyperferritinaemia (e.g. NAFLD, HD/CY, DD/CC etc)
- Iron Overload (i.e. proven overload in non-HH/YY genotypes, Ferroportin disease etc)

Coding ...

• ICD-10 - E83.1 Haemochromatosis

Bioiron classification

Novel	Molecular pattern	Note
classification		
HFE-related	<i>p.Cys282Tyr</i> homozygosity or compound heterozygosity of <i>p.Cys282Tyr</i> with other rare <i>HFE</i> pathogenic variants ¹⁰⁶⁻¹⁰⁹ or <i>HFE</i> deletion ¹¹⁰	Low penetrance; consider presence of host-related or environmental cofactors for IO In subjects with other HFE genotypes (e.g. <i>p.Cys282Tyr/His63Asp</i> compound heterozygosity or <i>p.His63Asp</i> homozygosity) consider second-line genetic testing for rarer variants.
<i>Non HFE</i> -related	Rare pathogenic variants in " <i>non-HFE</i> " genes: - <i>HJV</i> -related - <i>HAMP</i> -related - <i>TFR2</i> -related - <i>SLC40A1</i> (GOF)-related	Potentially, mutations in any hepcidin-regulatory gene may be causative (the effects of novel mutations should be confirmed through functional and epidemiological studies). Molecular subtypes characterization only at specialized centers, but the diagnosis of non- <i>HFE</i> related HC is sufficient to start phlebotomies at non-specialized centers*.
Digenic**	Double heterozygosity and/or double homozygosity/heterozygosity for mutations in two different genes involved in iron metabolism (<i>HFE</i> and/or <i>non-HFE</i>)	More commonly, <i>p.Cys282Tyr</i> mutation in <i>HFE</i> gene might coexist with mutation in other genes; rarely, both mutations involve <i>non-HFE</i> genes
Molecularly undefined	Molecular characterization (still) not available after sequencing of known genes (provisional diagnosis)	Patients should be referred (or DNA should be sent) to specialized centers

- Requires consensus definition of iron overload
- Topic for exceptional SIG meeting – 28th March

3. Blood sciences

- Ferritin/Transferrin saturation
- HFE mutation analysis
- ACB survey
 - Results pending

Discussion recommended phrases for HFE genotypes

C282Y homozygote

"Based on your genotype, you have a higher risk of haemochromatosis than the general population.

A diagnosis of haemochromatosis cannot be based on genetic information alone and you will require a clinical assessment and measurement of iron stores before considering the value/timing of any treatment."

"Latent" haemochromatosis

Latent – definition (Wiktionary)

Adjective

Existing or present but concealed or inactive

Synonyms: hidden, invisible

Antonyms: apparent, patent, visible

(pathology, of a virus) Remaining in an inactive or hidden phase; dormant.

Synonyms: dormant; see also inactive

(biology) Lying dormant or hidden until circumstances are suitable for development or manifestation.

Alternative terms considered included nascent, potential, dormant, quiescent, inactive.

Are any better than **latent** when considering the need of individuals to be clinically assessed and monitored over time.

Compound heterozygote

"Based on your genotype, you have a small increase in risk of haemochromatosis, compared to the general population (for further details please see <u>https://sites.exeter.ac.uk/ironoverload/patient-reports/c282y-h63d-compound-</u> <u>heterozygotes/</u>)

A diagnosis of haemochromatosis cannot be based on genetic information alone and you will require a clinical assessment and measures of iron stores. If you have symptoms these might be due to a number of causes other than haemochromatosis."

HFE mutation analysis

https://sites.exeter.ac.uk/ironoverload/

3. MRI Imaging

Patient ID: Name: Birth Date:	Pat1 Patient1 Anonymous 04 Mar 1943	Scan Date: Analysis Date: Referrer: MRI Center:	08 Mar 2023 17 Apr 2023
	Average Liv	ver Iron Concentra	tion:
	1.0 mg/g dry tissue [95% CI: 0.7 - 1.3] (NR: 0.17 - 1.8)	17 mmol/kg [95% CI: 12.4 - 23 (NR: 3-33)	dry tissue 4]
The 95	% confidence intervals [95% Cl] are derived	from a study of repeat measure Normal range (NR) is ta	ments by St Pierre et al., HemaSphere 20 ken from Bassett et al. Hepatology 1986
Echo Time	e: 6ms Echo Tin	ne: 9ms	Echo Time: 12ms
	Echo Time: 15ms	Echo Time: 18m	15

Liver Iron Concentration thresholds in Transfusional Iron Overload Extract from Olivieri et al, Blood 1997;89, 739-61		
LIC Range	Clinical Relevance	
0.17-1.8 mg Fe/g dw	Normal range in non-disease patients in healthy population	
3.2-7.0 mg Fe/g dw	Suggested optimal range of LIC for chelation therapy in transfusional iron loading	
7.0-15.0 mg Fe/g dw	Increased risk of complications	
	Greatly increased risk of cardiac disease and early death in patients with transfusional iron overload	

	HIC		
Insignificant	0 - <75 μmol/g	0 – 4 mg/g	
Mild	75 - <100 μmol/g	4 – 6 mg/g	
Moderate	100 - <150 μmol/g	6 - <8 mg/g	
Severe	150 - <300 μmol/g	8 - <16 mg/g	
Extreme	>300 µmol/g	>16 mg/g	

Ref Henninger et al, European Radiology (2020) 30:383-393

Discussion

service evaluation/study of MRLIC

- RfPB application in progress
- To test the hypothesis that MR LIC has clinical and cost effectiveness in the assessment of hyperferritinaemia
- Using Ferri-Smart (Resonance)
- Trial of venesection being standard of care

5. Venesection

National survey of venesection practice (in association with NCEPOD)

• Questionnaire to be sent to all Trusts and health boards

Discussion

venesection best practice guidance

- Agreed in principle with BSG guideline committee
- Writing group agreed
- Timescale to submit by end of 2024

Discussion controlled trial of venesection

- HTA application in progress
- To study C282Y homozygotes undergoing venesection
- Randomised to differing venesection end-points (ferritin)
- Measuring cost (Healthcare and personal), quality of life/symptoms

6. Sub-groups/associations

- Nurses group
 - Vicki Sugden, Becki Savage Nottingham, Gerri Mortimore Derby
- Primary care group
 - RCGP learning module
- BLT Patient Support group
 - PPIE for research
- All Party Parliamentary Group/HUK
- Haemochromatosis International/EFAPH

Discussion BLT patient information content

- Work in progress
- Patient group identified
- Funding being sought

BRITISH LIVER TRUST

7. Any other business

- NICE clinical guideline decision expected April 2024
- NHS digital disease register conversations currently paused
 pC282Y homozygosity
- Our Future Health study discussions ongoing
- NHS BT topic for next meeting

Forthcoming iron meetings

www.eic2024.inviteo.fr

8. Date of next meeting

- Exceptional SIG meeting Thursday 28th March 5-7pm
 - theme Consensus definition of iron overload
- Next SIG meeting Thursday 13th June 2024
 - Topic/theme haemochromatosis and the NHS blood transfusion service